
J Eng Math (2008) 61:81–95
DOI 10.1007/s10665-007-9180-4

On the theory of localised snarling instabilities in false-twist
yarn processes

W. B. Fraser · G. H. M. van der Heijden

Received: 8 August 2006/Accepted: 23 July 2007 / Published online: 7 September 2007
© Springer Science + Business Media B.V. 2007

Abstract A theory for the twist-induced localised snarling instability observed in whirling and transported yarn
in textile manufacturing processes such as false-twisting is developed. The buckling of the yarn can occur in two
modes. At a critical level of the tension the straight yarn path bifurcates to a whirling ballooning mode. The localised
snarling bifurcation can be triggered either from the straight line path prior to whirling or from the post-whirling
configuration depending on the transport speed of the yarn through the system. The yarn is modelled as a pre-
tensioned elastic rod. A perturbation analysis is carried out in which the small parameter measures bending relative
to dynamical forces. The whirling bifurcation is captured with a regular perturbation analysis and the snarling
bifurcation is captured with an internal bending layer in a singular perturbation analysis. This localised snarling is
a subcritical bifurcation that occurs at a critical combination of yarn torque and tension. Critical conditions, as well
as the position along the yarn where the snarling instability occurs, are obtained by matching the internal layer to
the outer solutions. To accomplish this matching yarn axial elasticity is essential.

Keywords Elastic rods · False twist · Internal bending layer · Localised buckling · Singular perturbation ·
Textile-yarn snarling

1 Introduction

In this paper we derive a theory for the localised snarling instability that is some times observed in a ballooning
or whirling yarn in textile-yarn manufacturing processes such as false-twisting [1, Sect. 2.6.2]. A photograph of a
well-developed snarl is shown in Fig. 1. The mechanics of this well-developed snarl (or ply) has been the subject
of previous studies (e.g., [2,3]). Here we consider the onset and initial stage of the snarling instability. We shall
model the yarn as a long elastic rod of uniform circular cross-section, and uniform bending and torsional stiffness.
The snarling instability can be treated as an internal bending layer that can be analysed using singular perturbation
methods [4].
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Fig. 1 Photograph of a
well-developed snarl in
false-twist textured yarn.
(Image provided by David
Phillips, Commonwealth
Scientific and Industrial
Research Organisation
(CSIRO), Textile & Fibre
Technology, Geelong (Vic),
Australia.)
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Fig. 2 The false-twist process. (a) Schematic diagram of the generic process. (b) Notation

The theory given here uses an elasto-dynamic rod model for twist insertion in textile yarn. The false-twist system
to be analysed is shown schematically in Fig. 2a. Twist is inserted between the roller nip A and the twisting spindle
O , and is removed between O and the exit rollers B, so that the yarn exiting from these rollers is without twist.
At A a spinning triangle [5] is formed in which, over a very short distance, the individual strands or fibres that
make up the yarn are wrapped into the ‘rod’ structure and accelerated so that, over the rest of its length, the yarn
following its steady, prebuckling, straight-line path in the uptwist region, is rotating with the uniform angular speed
ω0 of the spindle at O . Thus, between A and O the yarn is subject to a high constant torque, and between O and
B the torque is negligible and will be assumed zero in this analysis [6]. As in [7] we will ignore the length of the
spinning triangle and take the origin of our coordinate system at the inlet roller nip A. The analysis presented here
is confined to the uptwist region between A and O where torque is high and snarling instabilities are likely to occur.
It will be assumed that no slippage occurs at the entry roller or the twisting-spindle. In normal operation, before
buckling occurs, the yarn follows a straight path in this region, and is subject to a tension T0. The pre-stretch caused
by this tension will not be considered in this analysis as buckling is assumed to take place about this steady-state
prebuckled configuration. Variations in tension T̃ due to the buckling are assumed to be small compared with T0.
Additional strains due to T̃ are assumed to be a linear function of T̃ . The analysis in the first part of this paper
is similar to that given in the paper by Zhu et al. [8], and we use similar dimensionless quantities to theirs. These
authors model the yarn as a string, which allows them to study yarn ballooning but not the subsequent snarling for
which the bending and torsional stiffness of the yarn is essential.

The independent variables in the theory are the distance s, measured along the axis of the pre-stretched yarn,
to a material element of the yarn (P in Fig. 2b) from the inlet roller nip A; and the time t . The distance variable
s is thus a Lagrangian variable so that, if we assume that the mass linear density of the pre-stretched pre-buckled
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Theory of localised snarling instabilities in false-twist yarn processes 83

yarn is uniform (i.e., m(s) = m is constant), the use of this independent variable means that the mass of P does not
change during the motion, although the physical length of the element (δ� say) will be

δ� =
(

1 + T̃

AE

)
δs. (1.1)

The total tension is given by

T = T0 + T̃ . (1.2)

A is the cross-sectional area of the yarn, assumed constant, and E is the tangent modulus of the yarn at the point
of its stress/strain curve consistent with the pre-stretch caused by the pre-tension T0. The bending and torsional
stiffnesses B and K will be assumed constant and independent of tension T̃ and torque Q. We will assume that the
localised buckling occurs in the uptwist region and that any variation in the twist due to buckling is small so that
the strains due to twist variation will be ignored.

Other assumptions are as follows. The linear speed Ṽ of the yarn through the system is slow compared with
the speed of extensional and torsional waves in the yarn. As shown by Miao and Chen [9], who seem to be the
first authors to propose an elastic-rod model for twist insertion in textile yarn (albeit for straight yarn paths), if Ṽ
exceeds the speed of torsional waves no twist can be inserted between the feed rollers and the spindle. Also, it is
assumed that the yarn does not contact any machine surfaces between the feed rollers and the spindle. The action
of air-drag on the yarn is also assumed to be negligible.

The feed speed Ṽ is assumed to be constant so that in time interval δt the pre-stretched distance along the yarn
axis from the roller nip to P increases by δs = Ṽ δt . The material derivative operator is thus given by

D( ) = ∂( )

∂t
+ Ṽ

∂( )

∂s
. (1.3)

The rod theory is based on the usual assumption that plane sections remain plane and perpendicular to the rod
axis and that the bending-moment/curvature and torque/torsion constitutive relations are linear (Eq. 2.2 below).

The organisation of the paper is as follows. In Sect. 2 the equations for a transported rotating elastic rod are
set up and an appropriate nondimensionalisation is introduced that identifies the ratio of the bending force to the
dynamical force that drives the system as a small parameter. In Sect. 3 a regular perturbation expansion picks up the
ballooning of the yarn. This solution is used in Sect. 4 for the outer regions of the balloon while an internal layer is
constructed to describe the twist-induced snarling instability. This internal layer is governed by the equations for
a stationary free inextensible rod. The relevant solution here is the localised buckling solution studied in [10,11].
The localised buckling involves significant stretching of the yarn, which in this model is accommodated by the yarn
elasticity. Thus the buckling of the yarn is seen to be a two-stage process. At a critical level of T0 the straight yarn
path bifurcates to a whirling ballooning mode and the localised snarling bifurcates from this whirling mode at a
critical combination of Q and T0. Snarling effectively proceeds under dead-loading conditions and involves a jump
into self-contact. Under certain conditions snarling may also occur directly from the straight yarn path. Critical
conditions, as well as the position along the yarn where the snarling instability occurs, are obtained by matching
inner and outer solutions. To accomplish this matching the yarn axial elasticity is essential.

2 The mathematical formulation

As discussed above, in this paper the yarn is modelled as an elastic rod of uniform circular cross-section of radius r
and mass per unit length m. The implications of these assumptions for modelling textile-yarn dynamics have been
discussed in detail in [7]. The torque/torsion, and bending-moment/curvature constitutive equations are assumed to
be linear. The bending and torsional stiffnesses are given by

K = 1

2
G Ar2, and B = 1

4
E Ar2,
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84 W. B. Fraser, G. H. M. van der Heijden

where E is the tangent modulus, G is the shear modulus, and A = πr2 is the cross-sectional area of the rod
[12, Chapts. 4 and 5]. If ν is Poisson’s ratio, then G = E/[2(1 + ν)], and with ν = 0.5 (the incompressible limit)
this leads to

K = 2

3
B.

The point to be made here is that these stiffnesses have the same order of magnitude. These formulae are also used
below to estimate this order of magnitude. Data given in [13], and more recently in [14], show that the ratio K/B
given above is in approximate agreement with their data for textile yarns.

If the position vector of a material element P (Fig. 2b) of the thread line at time t with respect to the feed roller
nip at A is R(s, t), then the extensibility and unshearability conditions are

R′ · R′ =
(

1 + T̃

AE

)2

, and t · V = 0, (2.1)

and the bending moment/curvature and torque/torsion constitutive equations are

M = B(t × t′), Q = K τ. (2.2)

In the above equations V and M are, respectively, the shear-force and bending-moment vectors acting on a rod
cross-section, and ( )′ = ∂( )/∂s. The tangent vector, principal normal and binormal are given by

t = R′

(1 + T̃ /AE)
, n = t′/|t′| = t′/κ̂, and b = t × n, (2.3)

where κ̂ is the curvature of the yarn path. In discussing elastic-rod models of thread-line dynamics, it is convenient
to introduce the torsion τ defined in [15, Chapt. 18] as

τ = φ′ + b · n′ = φ′ + (b · t′′)/κ̂. (2.4)

The contribution (b · n′) to τ is the tortuosity of the rod axis, and φ is the angle between the plane of curvature
(defined by the vectors t and n) and a radial line, perpendicular to the strand axis, joined to any straight line parallel
to the axis, marked on the surface of the initially straight untwisted rod; φ′ can be interpreted as the initial torsion
in the straight strand before its axis is deformed into a curved path.

2.1 The equations of motion

We write the equations of motion relative to an orthonormal reference frame i, j, k, that rotates with constant angular
velocity ω0k where k is directed from A along the prebuckled yarn path towards the spindle; ω0 is the angular speed
the twisting spindle gives to the yarn, assumed constant.

With respect to this axis system the equation for the rate of change of linear momentum of the yarn element P is

m
[

D2R + 2ω0k × DR + ω2
0k × (k × R)

]
= (T t + V)′ . (2.5)

If the angular velocity of the element P is �(s, t), an expression for this variable in terms of the unit tangent vector
t is derived as follows:

Dt + ω0k × t = � × t,

so that

t × (Dt + ω0k × t) = t × (� × t) = � − (� · t)t,

on expansion of the vector triple product on the right. On rearrangement this gives

� = ωt t + t × (Dt + ω0k × t), (2.6)
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Theory of localised snarling instabilities in false-twist yarn processes 85

where ωt = � · t is the component of the yarn angular velocity about the yarn axis.
The principal moments of inertia of the element are

Iaxial = 1

2
mr2δs and Idia = 1

4
mr2δs = 1

2
Iaxial.

Thus, the total angular momentum of the element about its centre of mass is

Hδs = 1

2
mr2δs

{
ωt t + 1

2
[t × (Dt + ω0k × t)]

}
. (2.7)

Finally the rate of change of this angular momentum relative to the inertial frame is equal to the resultant moment
of all the forces and moments about the centre of mass acting on the element:

DH + ω0k × H = 1

2
mr2

{
(Dωt )t + ωt Dt + ω0ωt (k × t)

+1

2

[
t × D2t − 2ω0(k · t)Dt − ω2

0(k · t)(k × t)
] }

= (Qt)′ + M′ + R′ × V. (2.8)

Note that the equations of motion (2.5) and (2.8) do not depend on the particularity of the bending moment/curvature
or torque/torsion constitutive relations.

The t-component of (2.8) is

1

2
mr2 Dωt = Q′, (2.9)

an equation which depends on the yarn path only through the torque/torsion constitutive equation. When this
axial component of the angular momentum equation is subtracted from (2.8) the transverse component of (2.8) is
obtained:

1

2
mr2

{
ωt Dt + ω0ωt (k × t) + 1

2

[
t × D2t − 2ω0(k · t)Dt − ω2

0(k · t)(k × t)
]}

= Qt′ + M′ + R′ × V. (2.10)

2.2 Boundary conditions

In the light of the above discussion the boundary conditions at the inlet rollers and the spindle are

R(0, t) = 0, R(L , t, ) = Lk, M(0, t) = M(L , t) = 0, (2.11)

L being the length of the uptwist region.

2.3 Dimensionless equations

We shall use L as the length scale, 1/ω0 as the time scale, and forces will be made dimensionless with respect to
mω2

0 L2. Thus dimensionless (barred) variables are defined as follows:

(R̄, s̄) = (R, s)

L
, t̄ = ω0t, ω̄ = ωt

ω0
, T̄W = LTW , ε2 = B

mω2
0 L4

, κ = K

B
,

γ = AE

mω2
0 L2

,
r

L
= ε

2√
γ

, εV = Ṽ

ω0 L
, D̄ = D

ω0
=

(
∂

∂ t̄
+ εV ∂

∂ s̄

)
,

(T̄ , V̄) = (T, V)

mω2
0 L2

, (Q̄, M̄) = (Q, M)

mω2
0 L3

, τ̄ = Lτ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

where the small parameter ε ≈ 10−3–10−5, and κ , V and γ are O(1) quantities. Typical parameter values are listed
in Table 1.
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Table 1 Typical
dimensional and
dimensionless parameters
for the false-twist process
[1]

L 4 m ε 0.000024
r 0.0005 m V 10.43
m 167 × 10−7 kg/m γ 0.15
ω0 10,000 rad/s κ 2/3
Ṽ 10.0 m/s
E 5 × 109 N/m2

As all variables will be dimensionless from now on, unless specifically stated otherwise, the barred notation will
be dropped.

The equation for the rate of change of linear momentum (2.5) becomes

D2R + 2(k × DR) + k × (k × R) = (T t + V)′, (2.13)

where T = T0 + T̃ . Those for the rate of change of angular momentum (2.8) and (2.10) become

ε2 2

γ
Dω = Q′, (2.14)

and

ε2 2

γ

{[
ω − 1

2
(k · t)

]
(k × t) + [ω − (k · t)]Dt + 1

2
(t × D2t)

}
= Qt′ + M′ + R′ × V, (2.15)

subject to the constraints

t = R′

(1 + T̃ /γ )
, R′ · R′ = (1 + T̃ /γ )2 and V · t = 0. (2.16)

The constitutive equations (2.2) become

M = ε2(t × t′), Q = ε2κτ. (2.17)

Equations (2.13) through (2.17) together with an appropriate set of boundary and initial conditions constitute a
well-posed system of equations.

2.3.1 Twist

In dimensional terms textile-yarn twist TW is measured in turns per metre of straight yarn. Thus 2πTW = φ′. False
twist systems insert a precisely determined amount of twist into the yarn which is calculated as follows. Consider
the rotation of a yarn cross-section in time δt , which is (ω0/2π)δt , as an additional length of yarn Ṽ δt is fed through
the inlet roller nip. The twist inserted is

TW = ω0δt

2π Ṽ δt
= ω0

2π Ṽ
. (2.18)

In topological terms we are inserting Link into the yarn and the amount of Link inserted into the straight yarn in the
uptwist region is just

Lk = TW × L , (2.19)

and since the system runs at constant speeds Ṽ and ω0 this quantity is unchanged, even when whirling and snarling
occur.

In dimensionless terms Eq. 2.18 becomes

TW = 1/(2πεV), (2.20)

and the constitutive equation (2.17)2 can now be written as

Q = ε2κ
(
2πTW + b · n′) ε

κ

V + ε2κb · n′. (2.21)
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Finally, introducing the constitutive relations (2.17)1 and (2.21) into the transverse component of the equation
for the rate of change of angular momentum (2.14), we obtain

ε2 2

γ

{
[ω − 1

2
(k · t)](k × t) + [ω − (k · t)]Dt + 1

2
(t × D2t)

}

= ε
κ

V t′ + ε2κ(b · n′)t′ + ε2(t × t′′) + R′ × V. (2.22)

2.3.2 Boundary conditions

The dimensionless form of the boundary conditions is

R(0, t) = 0, R(1, t) = k, M(0, t) = M(1, t) = 0. (2.23)

3 The regular perturbation analysis—ballooning

We expand the variables in the following perturbation series:

R = ks + εR1 + ε2R2 + · · · , V = V0 + εV1 + ε2V2 + · · · , T̃ = εT1 + ε2T2 + · · · , (3.1)

and let R1 = u1i + v1j + w1k, and so on. Now introduce these expansions into (2.16) to obtain

T1 = γw′
1, T2 = γ

[
w′

2 + 1

2
(u′

1
2 + v′

1
2
)

]
, (3.2,3.3)

and the expansion of the tangent vector

t = k + ε(u′
1i + v′

1j) + ε2
{
(u′

2 − w′
1u′

1)i + (v′
2 − w′

1v
′
1)j − 1

2
(u′

1
2 + v′

1
2
)k

}
+ · · · . (3.4)

It can also be shown that the tortuosity (b · n′) ∼ O(ε3).
The expansion for the shear force V is found as follows. Form the vector product of t with the angular momentum

equation (2.15)2 and introduce the above expansions into this result and the constraint equation (2.16)3 to determine
that

V0 = V1 = 0, (3.5)

and the leading-order non-zero contribution from the transverse angular momentum equation is

V2 = κ

V (−v′′
1 i + u′′

1j). (3.6)

With these results we can now write down the expansion of the equation of linear momentum (2.13) up to O(ε2)

as follows.

3.1 The O(ε) equations

The Cartesian components of the O(ε) linear momentum equation are

∂2u1

∂t2 − 2
∂v1

∂t
− u1 − T0u′′

1 = 0, (3.7)

∂2v1

∂t2 + 2
∂u1

∂t
− v1 − T0v

′′
1 = 0, (3.8)

∂2w1

∂t2 = γw′′
1 , (3.9)
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subject to the boundary conditions

u1(0, t) = v1(0, t) = w1(0, t) = 0, u1(1, t) = v1(1, t) = w1(1, t) = 0. (3.10)

We first look for solutions to Eqs. 3.7 and 3.8 that represent the lowest mode of ballooning in the uptwist region:

u1 = (
U sin λt + Ū cos λt

)
sin πs, v1 = (

V cos λt + V̄ sin λt
)

sin πs. (3.11)

There are two cases to be considered.
Case 1

V = U, V̄ = −Ū , T0π
2 = (λ − 1)2,

(3.12)
u1 = (

U sin λt + Ū cos λt
)

sin πs, v1 = (
U cos λt − Ū sin λt

)
sin πs.

Case 2

V = −U V̄ = Ū , T0π
2 = (λ + 1)2,

(3.13)
u1 = (

U sin λt + Ū cos λt
)

sin πs, v1 = − (
U cos λt − Ū sin λt

)
sin πs.

These two solutions differ only in the rotational direction of the whirling. They correspond to stationary whirl in
the fixed frame, with angular velocity π

√
T0. The special case T0 = 1/π2 and λ = 0 represents a yarn path that is

stationary relative to the rotating reference frame.
We note that the solution of (3.9) is independent of these solutions, and in both cases we may write the solution

as

w1 = (
W sin π

√
γ t + W̄ cos π

√
γ t

)
sin πs, (3.14)

where again, for simplicity of presentation, we shall only consider the lowest longitudinal mode of vibration. To
further fix the values of T0 and λ at which this ballooning mode bifurcates from the straight yarn path, we must
investigate the conditions for the existence of a solution to the O(ε2) equations.

3.2 The O(ε2) equations

The Cartesian components of the O(ε2) linear momentum equation are

∂2u2

∂t2 − 2
∂v2

∂t
− u2 − T0u′′

2 = −2V ∂

∂s

(
∂u1

∂t
− v1

)
+ (γ − T0)(w

′
1u′

1)
′ − κ

V v′′′
1 ,

∂2v2

∂t2 + 2
∂u2

∂t
− v2 − T0v

′′
2 = −2V ∂

∂s

(
∂v1

∂t
+ u1

)
+ (γ − T0)(w

′
1v

′
1)

′ + κ

V u′′′
1 , (3.15)

∂2w2

∂t2 − γw′′
2 = −2V ∂2w1

∂s∂t
+ 1

2
(γ − T0)(u

′
1

2 + v′
1

2
)′.

When the results of Sect. 3.1 are inserted in the right side of (3.15)3 we obtain

∂2w2

∂t2 − γw′′
2 = −2V

[
π2√γ (W cos π

√
γ t − W̄ sin π

√
γ t) cos πs

]
−1

2
(γ − T0)(U

2 + Ū 2)π3 sin 2πs.

In order to obtain a solution of this equation, the terms on the right-hand side that resonate with the solution of the
corresponding homogeneous equation must be eliminated. In this case we require that W = W̄ = 0 so that the
O(ε) solution is w1 ≡ 0 and hence T1 ≡ 0 by (3.2). Thus there are no longitudinal vibrations of the yarn at this
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order. When the resonant terms on the right of the other two equations of (3.15)1,2 are eliminated we find that for
both cases 1 and 2 above the critical value of the tension is

T0 =
( κπ

2V2

)2
, (3.16)

and

λ = ±
(

1 + κπ2

2V2

)
, (3.17)

where in this latter expression the upper sign corresponds to case 1 and the lower sign to case 2.
At the critical tension given by (3.16) the first-mode ballooning solution bifurcates from the straight state.

Higher-order modes similarly bifurcate at loads obtained by replacing π in (3.16) by nπ .
Finally we note that the right sides of (3.15)1,2 are now reduced to zero so that the only solutions of these

equations will be proportional to the solutions of the O(ε) equations. Thus, without loss of generality, we can set
u2 = v2 ≡ 0, and the nonzero parts of the O(ε2) solutions are

w2 = − (γ − T0)π

8γ
(U 2 + Ū 2) sin 2πs, (3.18)

T2 = (U 2 + Ū 2)
π2

4
(T0 cos 2πs + γ ) . (3.19)

This positive T2 describes the increase in yarn tension due to ballooning.
We now consider the further localised buckling bifurcation from this ballooning solution.

4 The localised snarling instability

In this section we obtain a solution that represents a localised buckling instability of the yarn. Such instabilities,
in which the yarn develops a local buckle which rapidly increases in amplitude until the yarn makes self contact
and snarls, are often observed in practice (see Fig. 1). This snarling instability imposes a serious limitation on the
speed of yarn-twisting processes. We consider the possibility of a localised instability that occurs on the whirling
(or ballooning) yarn configuration analysed in the last section. Here we shall give the detailed analysis for the case 1
pre-buckled solution above. The case 2 solution is obtained by reversing the sign on v1. Thus we will assume that
the localised buckle is centred at a point s = sb along the pre-buckled yarn path that has the position vector

R(sb, t) = sbk + ε
[(

U sin λt + Ū cos λt
)

i + (
U cos λt − Ū sin λt

)
j
]

sin πsb

−ε2 (γ − T0)π

8γ
(U 2 + Ū 2) sin 2πsbk + O(ε3). (4.1)

Note that there is no axial yarn vibration in the O(ε) ballooning solution.
We analyse this instability as an internal bending layer using the method of singular perturbation expansions [4].
The perturbation equations above represent the outer expansion except that now we must carry out the analysis

of these equations in three separate regions as follows:

Region 1: where 0 ≤ s < sb, which is the part of the outer solution between the guide-eye and the internal layer
in which bending is very small;

Region 2: the internal buckling layer where the curvature of the yarn axis is large and bending becomes significant.
The torque, which is determined by the outer solution, remains constant through this region;

Region 3: where sb < s ≤ 1, which is the part of the outer solution between the internal layer and the twisting
spindle.
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4.1 The outer solution

We now seek the solutions of the O(ε) equations (3.7)–(3.9) in regions 1 and 3. Again there are two cases to be
considered, and we shall confine our exposition to the solutions corresponding to case 1 above.
Region 1 (0 ≤ s < sb):

u1 = (
U1 sin λ1t + Ū1 cos λ1t

)
sin αs, v1 = (

U1 cos λ1t − Ū1 sin λ1t
)

sin αs,

w1 = as, T1 = γ a, (4.2)

where

T0α
2 = (λ1 − 1)2. (4.3)

Region 3 (sb < s ≤ 1):

u1 = (
U3 sin λ3t + Ū3 cos λ3t

)
sin β(1 − s), v1 = (

U3 cos λ3t − Ū3 sin λ3t
)

sin β(1 − s),

w1 = b(1 − s), T1 = −γ b, (4.4)

where

T0β
2 = (λ3 − 1)2. (4.5)

These solutions also satisfy the boundary conditions at s = 0, 1. The constants a and b in the expressions for w1 and
T1 above represent a static component of the axial yarn strain. This component of the strain is essential in matching
the additional stretching caused by the localised buckling deformation. The constants λ1, λ3, a, b, α, β are to be
determined in part from the matching procedure described below and in Appendix A.

4.2 The inner solution

The internal bending layer occurs at position R(sb, t) given by Eq. 4.1 above. Thus we define a stretched coordinate
and inner expansions as follows:

η = (s − sb)

ε
, R = R(sb, t) + εr0(η, t) + ε2r1(η, t) + · · · , (4.6)

V = V̂0(η, t) + εV̂1(η, t) + · · · , T = T̂0 + εT̂1(η, t) + ε2T̂2(η, t) + · · · , (4.7)

where a ‘hat’ has been used to distinguish the inner variables other than r(η). With this substitution, the operator
D becomes

D̂ = ∂( )

∂t
+ V ∂( )

∂η
. (4.8)

First we determine the torque in the inner solution. In terms of the inner variables the axial component of the rate
of change of angular momentum equation (2.14) is

∂ Q̂

∂η
= O(ε3), (4.9)

so that Q̂ remains constant through the inner layer at least to O(ε2). Further, since the torque must be continuous
from the outer to the inner solution we deduce from (2.21), and the fact that (b · n′) ∼ O(ε3) in the outer solution,
that

Q̂ = ε
κ

V + O(ε5). (4.10)

From (2.16) we deduce that

r0η · r0η = 1, T̂1 = γ (r0η · r1η), (4.11)

and

t̂ = r0η + ε[r1η − (r1η · r0η)r0η] + · · · ,

t̂0 · V̂0 = r0η · V̂0 = 0, r0η · V̂1 = −t̂1 · V̂0, (4.12)

where ( )η = ∂( )/∂η.
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4.2.1 The leading-order inner equations

The leading-order inner equation for the rate of change of linear momentum obtained from (2.13) is(
T̂0r0η + V̂0

)
η

= 0, (4.13)

and forming the vector product between r0η and the leading-order term from the rate of change of angular momentum
Eq. 2.22 gives us

V̂0 = κ

V (r0η × r0ηη) + r0η × (r0η × r0ηηη). (4.14)

The boundary conditions for the solution of the inner equations are determined by the matching conditions given
in Appendix A as follows.

First, on substitution of the outer solutions in the matching condition (6.3), we obtain for the O(ε) matching
between regions 1 and 2:

lim
ε→0
ξfixed

{[(
U sin λt + Ū cos λt

)
i + (

U cos λt − Ū sin λt
)

j
]

sin πsb + r0

(
δξ

ε

)

− [(
U1 sin λ1t + Ū1 cos λ1t

)
i + (

U1 cos λ1t − Ū1 sin λ1t
)

j
]

sin αsb −
(

δξ

ε
+ asb

)
k
}

= 0,

and for the O(ε) matching between region 2 and region 3:

lim
ε→0
ξfixed

{[(
U sin λt + Ū cos λt

)
i + (

U cos λt − Ū sin λt
)

j
]

sin πsb + r0

(
δξ

ε

)

− [(
U3 sin λ3t + Ū3 cos λ3t

)
i + (

U3 cos λ3t − Ū3 sin λ3t
)

j
]

sin β(1 − sb) −
[
δξ

ε
+ b(1 − sb)

]
k
}

= 0.

In order to accomplish the matching of the i and j components we set U1 = U3 = U , Ū1 = Ū3 = Ū , α = β = π

and λ1 = λ3 = λ. The matching of the k components in the above expression can be expressed in a simpler form
by setting δξ/ε = η:

lim
η→−∞[r0(η) − ηk] = asbk, lim

η→+∞[r0(η) − ηk] = b(1 − sb)k. (4.15)

Similarly, for the other variables we deduce the leading-order matching conditions

lim
η→±∞ r0η(η) = k, lim

η→±∞ T̂0(η) = T0,

(4.16)
lim

η→±∞[r0η(η) × r0ηη(η)] = 0, lim
η→±∞ V̂0(η) = V0(sb) = 0,

where the value of V0(sb) is determined by (3.5). With these boundary conditions Eq. 4.13 can be integrated to give

T̂0r0η + V̂0 = T0k. (4.17)

When V̂0 is eliminated between this equation and (4.14), and the vector product of the resulting equation and r0η

is formed, the result is

(r0η × r0ηη)η + κ

V r0ηη = −T0r0η × k. (4.18)

Equation (4.18) can now be integrated subject to the above boundary conditions and the constant of integration is
found to be (κ/V)k. When a further cross-product of this final equation with r0η is formed, the equation

r0ηη + κ

V (r0η × k) − T0
[
(r0η · k)r0 − (r0 · r0η)k

] = 0 (4.19)

is obtained.
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We now introduce a local cylindrical coordinate system (r̂ , θ̂ , ẑ) with its origin at R(sb) and unit basis vectors
(êr , êθ , k) where

êr × êθ = k.

Thus, setting r0 = r̂ êr + ẑk we find that the components of this equation are

r̂ηη − r̂(θ̂η)
2 − T0 ẑηr̂ = − κ

V r̂ θ̂η, (4.20)

(2r̂ηθ̂η + r̂ θ̂ηη) = κ

V r̂η, (4.21)

ẑηη + 1

2
T0(r̂

2)η = 0. (4.22)

Now r̂ times (4.21) can be integrated, subject to the above boundary conditions at η → ±∞, to give θ̂η = κ/(2V),
and (4.22) can be integrated to give

ẑη = 1 − 1

2
T0r̂2. (4.23)

When these results are used to eliminate θ̂η and ẑη from (4.20) we obtain a Duffing equation for r̂ :

r̂ηη −
[

T0 −
( κ

2V
)2

]
r̂ + 1

2
T 2

0 r̂3 = 0. (4.24)

The solution of this equation subject to the boundary condition limη→±∞ r̂ = 0 is

r̂ = 1

T0

√
T0 −

( κ

2V
)2

sech

{(√
T0 −

( κ

2V
)2

)
η

}
, (4.25)

provided the condition

κ

V
√

T0
< 2 (4.26)

is satisfied, otherwise r̂(η) ≡ 0. If the inequality in (4.26) is replaced by an equality, this gives the critical condition
for the localised buckling to occur in the whirling yarn.

When this final result is inserted in (4.23) and this equation is integrated subject to the condition that ẑ = 0 when
η = 0, the result is

ẑ = η − 1

2T0

√
T0 −

( κ

2V
)2

tanh

{(√
T0 −

( κ

2V
)2

)
η

}
. (4.27)

If we now apply the matching conditions (4.15) to the k component of r0 we find that

1

2T0

√
T0 −

( κ

2V
)2 = asb,

1

2T0

√
T0 −

( κ

2V
)2 = b(sb − 1). (4.28)

Thus

asb = −b(1 − sb). (4.29)

Two further equations for the determination of a, b, ρ1, ρ3, sb can be obtained if we consider the O(ε2) inner
equation of linear momentum and make further use of the matching conditions.
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4.2.2 The O(ε2) equations

From the equation of linear momentum we obtain[
T̂0 t̂1 + T̂1r0η + V̂1

]
η

= 0. (4.30)

The solution of this equation is subject to the constraints (4.11) and (4.12). Equation (4.30) can be integrated and
the constants of integration can be determined from the matching conditions. (Note that results (3.5) still hold for
this outer solution.) Thus, matching between regions 1 and 2, using (4.16), we obtain

T̂0 t̂1 + T̂1r0η + V̂1 = T0
[
(U sin λt + Ū cos λt)i + (U cos λt − Ū sin λt)j)

]
π cos πsb + γ ak, (4.31)

and matching between regions 2 and 3 we obtain

T̂0 t̂1 + T̂1r0η + V̂1 = T0
[
(U sin λt + Ū cos λt)i + (U cos λt − Ū sin λt)j

]
π cos πsb − γ bk. (4.32)

Since the right-hand sides of these last two equations must be identical, we set a = −b, and inserting this result
into (4.29) and using results (4.28), we obtain

sb = 1

2
, a = −b = 1

T0

√
T0 −

( κ

2V
)2

, (4.33)

and finally the first integral of (4.30) is

T̂0 t̂1 + T̂1r0η + V̂1 =
{

γ

T0

√
T0 −

( κ

2V
)2

}
k. (4.34)

Finally we summarise the O(ε) outer solution.

4.2.3 The O(ε) outer solution

u1 = [
U sin λt + Ū cos λt

]
sin πs, v1 = [

U cos λt − Ū sin λt
]

sin πs,

w1 =
[

1

T0

√
T0 −

( κ

2V
)2

]
s, 0 ≤ s <

1

2

(4.35)

=
[

1

T0

√
T0 −

( κ

2V
)2

]
(s − 1)

1

2
< s ≤ 1,

T1 = γ

T0

√
T0 −

( κ

2V
)2

.

where

T0π
2 = (λ − 1)2.

We note that the expressions for u1, v1 and T0 are identical to the case 1 ballooning results (3.12) but that now
w1 and T1 are no longer zero because of the snarling. Note also that the snarl forms in the centre of the balloon at
s = 1/2.
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Fig. 3 The snarling
bifurcation diagram (taking
κ/V = 1)
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4.3 Discussion

To illustrate the snarling bifurcation, in Fig. 3 we plot T0 against the static strain 2a, which represents the slack
taken up by the localised snarl. Note that the bifurcation is subcritical. Snarling is initiated when the pre-tension
T0 drops to the critical value given by (4.26). As the instability is highly localised, located away from the ends of
the rod, snarling effectively takes place under dead-loading conditions. This means that, rather than following the
post-buckling curve in Fig. 3, a dynamical jump will occur to a remote (self-contacting) state, as indicated by the
arrow in the figure.

Comparing the critical load for ballooning, (3.16), with the critical load for snarling, (4.26), we conclude that
snarling may be initiated before or after ballooning, depending on whether V < π or V > π . In the former case
snarling occurs off the straight yarn path.

In interpreting these critical loads it should be remembered that the limit V → 0 (or Ṽ → 0) is singular: with
no yarn feeding through, the spindle acts to impart an unlimited amount of twist to the yarn.

5 Concluding remarks

In this paper, we have derived a theory for the snarling instability that can occur in textile yarn manufacturing
systems. Within this theory the well-known Coyne [10] solution for the localised buckling of a twisted isotropic
elastic rod appears as an internal bending-layer solution. The particular system we have chosen to illustrate the
theory is an idealised version of a false-twist system. In such a system the instability will occur in the uptwist
region where the torque is high and we have confined our analysis to this region as the torque is negligible in the
post twisting-spindle region. We have simplified the boundary conditions at the spindle and our calculation of the
torque/twist relation (2.21) is a result of this idealisation.

One of the main systems where such instabilities can cause problems is the false-twist yarn-texturing system [1].
In these systems the yarn mechanics in the uptwist region is complicated by the heating elements that are used to
heat-set the twist in the thermo-plastic fibres used in such manufactures. As the yarn passes over these elements,
its elastic properties will be changed so that our theory, which ignores these effects, can only approximate the
instabilities that occur in such systems. However, we believe that snarling instabilities are essentially mechanical
in nature and that changes in the physical properties of the fibres as they pass over the heating elements may cause
a critical combination of parameters to trigger a snarling instability.

6 Appendix A: Formal discussion of the matching procedure

The matching procedure provides boundary conditions for the solutions in the various sections. As all variables
must be continuous at all points on the yarn axis, we shall illustrate the matching procedure for the position vectors
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between regions 1 and 2. Let the region 1 outer solution have the form

R(s) = ks + εR1(s) + · · · ,

and let the inner solution in region 2 have the form

R(s) = R(sb) + εr0(η) + ε2r1(η) + · · · = ksb + εR1(sb) + εr0(η) + ε2r1(η) + · · · ,

where η = (s − sb)/ε is the stretched inner layer independent variable, and the inner layer is centred at R(sb), given
in this case by (4.1).

Now introduce the intermediate matching variable:

ξ = s − sb

δ(ε)
= ε

δ(ε)
η, (6.1)

where the order of magnitude of the small parameter δ(ε) > 0 is such that

lim
ε→0

δ(ε) = 0 and lim
ε→0

ε

δ
= lim

ε→0

δ2

ε
= 0. (6.2)

That is to say that δ tends to zero slower than ε but faster than
√

ε. Now rewrite the inner solution in terms of
η = δξ/ε, and expand the region 1 outer solution in the neighbourhood of s = sb using the substitution s = sb +δξ .

We match the region 1 solution to the inner solution using the following limit procedure:

lim
ε→0
ξfixed

{
R(sb) + εr0

(
δξ

ε

)
+ ε2r1

(
δξ

ε

)
+ · · ·

−R0(sb + δξ) − εR1(sb + δξ) + · · ·
}

= 0, (6.3)

where Taylor-series expansions of the outer solution terms about s = sb are to be used before the limit process
is applied. A similar expression applies between the inner solution and the region 3 outer solution, and the other
variables can be matched in similar manner.
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